Step of Proof: equiv_rel_functionality_wrt_iff
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
equiv
rel
functionality
wrt
iff
:
T
,
T'
:Type,
E
:(
T
T
),
E'
:(
T'
T'
).
(
T
=
T'
)
(
x
,
y
:
T
.
E
(
x
,
y
)
E'
(
x
,
y
))
(EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
EquivRel(
T'
;
x
,
y
.
E'
(
x
,
y
)))
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
T'
: Type
C1:
3.
E
:
T
T
C1:
4.
E'
:
T'
T'
C1:
5.
T
=
T'
C1:
6.
x
,
y
:
T
.
E
(
x
,
y
)
E'
(
x
,
y
)
C1:
EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
EquivRel(
T'
;
x
,
y
.
E'
(
x
,
y
))
C
.
Definitions
P
Q
,
P
&
Q
,
t
T
,
x
(
s1
,
s2
)
,
P
Q
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
iff
wf
origin